13#include <Eigen/SparseCore>
14#include <gch/small_vector.hpp>
16#include "sleipnir/optimization/solver/exit_status.hpp"
17#include "sleipnir/optimization/solver/interior_point_matrix_callbacks.hpp"
18#include "sleipnir/optimization/solver/iteration_info.hpp"
19#include "sleipnir/optimization/solver/options.hpp"
20#include "sleipnir/optimization/solver/util/error_estimate.hpp"
21#include "sleipnir/optimization/solver/util/filter.hpp"
22#include "sleipnir/optimization/solver/util/fraction_to_the_boundary_rule.hpp"
23#include "sleipnir/optimization/solver/util/is_locally_infeasible.hpp"
24#include "sleipnir/optimization/solver/util/kkt_error.hpp"
25#include "sleipnir/optimization/solver/util/regularized_ldlt.hpp"
26#include "sleipnir/util/assert.hpp"
27#include "sleipnir/util/print_diagnostics.hpp"
28#include "sleipnir/util/scope_exit.hpp"
29#include "sleipnir/util/scoped_profiler.hpp"
30#include "sleipnir/util/solve_profiler.hpp"
31#include "sleipnir/util/symbol_exports.hpp"
64template <
typename Scalar>
65ExitStatus interior_point(
66 const InteriorPointMatrixCallbacks<Scalar>& matrix_callbacks,
67 std::span<std::function<
bool(
const IterationInfo<Scalar>& info)>>
69 const Options& options,
70#ifdef SLEIPNIR_ENABLE_BOUND_PROJECTION
71 const Eigen::ArrayX<bool>& bound_constraint_mask,
73 Eigen::Vector<Scalar, Eigen::Dynamic>& x) {
79 Eigen::Vector<Scalar, Eigen::Dynamic> p_x;
81 Eigen::Vector<Scalar, Eigen::Dynamic> p_y;
83 Eigen::Vector<Scalar, Eigen::Dynamic> p_s;
85 Eigen::Vector<Scalar, Eigen::Dynamic> p_z;
90 const auto solve_start_time = std::chrono::steady_clock::now();
92 gch::small_vector<SolveProfiler> solve_profilers;
93 solve_profilers.emplace_back(
"solver");
94 solve_profilers.emplace_back(
" ↳ setup");
95 solve_profilers.emplace_back(
" ↳ iteration");
96 solve_profilers.emplace_back(
" ↳ feasibility ✓");
97 solve_profilers.emplace_back(
" ↳ iter callbacks");
98 solve_profilers.emplace_back(
" ↳ KKT matrix build");
99 solve_profilers.emplace_back(
" ↳ KKT matrix decomp");
100 solve_profilers.emplace_back(
" ↳ KKT system solve");
101 solve_profilers.emplace_back(
" ↳ line search");
102 solve_profilers.emplace_back(
" ↳ SOC");
103 solve_profilers.emplace_back(
" ↳ next iter prep");
104 solve_profilers.emplace_back(
" ↳ f(x)");
105 solve_profilers.emplace_back(
" ↳ ∇f(x)");
106 solve_profilers.emplace_back(
" ↳ ∇²ₓₓL");
107 solve_profilers.emplace_back(
" ↳ cₑ(x)");
108 solve_profilers.emplace_back(
" ↳ ∂cₑ/∂x");
109 solve_profilers.emplace_back(
" ↳ cᵢ(x)");
110 solve_profilers.emplace_back(
" ↳ ∂cᵢ/∂x");
112 auto& solver_prof = solve_profilers[0];
113 auto& setup_prof = solve_profilers[1];
114 auto& inner_iter_prof = solve_profilers[2];
115 auto& feasibility_check_prof = solve_profilers[3];
116 auto& iter_callbacks_prof = solve_profilers[4];
117 auto& kkt_matrix_build_prof = solve_profilers[5];
118 auto& kkt_matrix_decomp_prof = solve_profilers[6];
119 auto& kkt_system_solve_prof = solve_profilers[7];
120 auto& line_search_prof = solve_profilers[8];
121 auto& soc_prof = solve_profilers[9];
122 auto& next_iter_prep_prof = solve_profilers[10];
125#ifndef SLEIPNIR_DISABLE_DIAGNOSTICS
126 auto& f_prof = solve_profilers[11];
127 auto& g_prof = solve_profilers[12];
128 auto& H_prof = solve_profilers[13];
129 auto& c_e_prof = solve_profilers[14];
130 auto& A_e_prof = solve_profilers[15];
131 auto& c_i_prof = solve_profilers[16];
132 auto& A_i_prof = solve_profilers[17];
134 InteriorPointMatrixCallbacks<Scalar> matrices{
135 [&](
const Eigen::Vector<Scalar, Eigen::Dynamic>& x) -> Scalar {
136 ScopedProfiler prof{f_prof};
137 return matrix_callbacks.f(x);
139 [&](
const Eigen::Vector<Scalar, Eigen::Dynamic>& x)
140 -> Eigen::SparseVector<Scalar> {
141 ScopedProfiler prof{g_prof};
142 return matrix_callbacks.g(x);
144 [&](
const Eigen::Vector<Scalar, Eigen::Dynamic>& x,
145 const Eigen::Vector<Scalar, Eigen::Dynamic>& y,
146 const Eigen::Vector<Scalar, Eigen::Dynamic>& z)
147 -> Eigen::SparseMatrix<Scalar> {
148 ScopedProfiler prof{H_prof};
149 return matrix_callbacks.H(x, y, z);
151 [&](
const Eigen::Vector<Scalar, Eigen::Dynamic>& x)
152 -> Eigen::Vector<Scalar, Eigen::Dynamic> {
153 ScopedProfiler prof{c_e_prof};
154 return matrix_callbacks.c_e(x);
156 [&](
const Eigen::Vector<Scalar, Eigen::Dynamic>& x)
157 -> Eigen::SparseMatrix<Scalar> {
158 ScopedProfiler prof{A_e_prof};
159 return matrix_callbacks.A_e(x);
161 [&](
const Eigen::Vector<Scalar, Eigen::Dynamic>& x)
162 -> Eigen::Vector<Scalar, Eigen::Dynamic> {
163 ScopedProfiler prof{c_i_prof};
164 return matrix_callbacks.c_i(x);
166 [&](
const Eigen::Vector<Scalar, Eigen::Dynamic>& x)
167 -> Eigen::SparseMatrix<Scalar> {
168 ScopedProfiler prof{A_i_prof};
169 return matrix_callbacks.A_i(x);
172 const auto& matrices = matrix_callbacks;
178 Scalar f = matrices.f(x);
179 Eigen::Vector<Scalar, Eigen::Dynamic> c_e = matrices.c_e(x);
180 Eigen::Vector<Scalar, Eigen::Dynamic> c_i = matrices.c_i(x);
182 int num_decision_variables = x.rows();
183 int num_equality_constraints = c_e.rows();
184 int num_inequality_constraints = c_i.rows();
187 if (num_equality_constraints > num_decision_variables) {
188 if (options.diagnostics) {
189 print_too_few_dofs_error(c_e);
192 return ExitStatus::TOO_FEW_DOFS;
195 Eigen::SparseVector<Scalar> g = matrices.g(x);
196 Eigen::SparseMatrix<Scalar> A_e = matrices.A_e(x);
197 Eigen::SparseMatrix<Scalar> A_i = matrices.A_i(x);
199 Eigen::Vector<Scalar, Eigen::Dynamic> s =
200 Eigen::Vector<Scalar, Eigen::Dynamic>::Ones(num_inequality_constraints);
201#ifdef SLEIPNIR_ENABLE_BOUND_PROJECTION
203 s = bound_constraint_mask.select(c_i, s);
205 Eigen::Vector<Scalar, Eigen::Dynamic> y =
206 Eigen::Vector<Scalar, Eigen::Dynamic>::Zero(num_equality_constraints);
207 Eigen::Vector<Scalar, Eigen::Dynamic> z =
208 Eigen::Vector<Scalar, Eigen::Dynamic>::Ones(num_inequality_constraints);
210 Eigen::SparseMatrix<Scalar> H = matrices.H(x, y, z);
213 slp_assert(g.rows() == num_decision_variables);
214 slp_assert(A_e.rows() == num_equality_constraints);
215 slp_assert(A_e.cols() == num_decision_variables);
216 slp_assert(A_i.rows() == num_inequality_constraints);
217 slp_assert(A_i.cols() == num_decision_variables);
218 slp_assert(H.rows() == num_decision_variables);
219 slp_assert(H.cols() == num_decision_variables);
222 if (!isfinite(f) || !c_e.allFinite() || !c_i.allFinite()) {
223 return ExitStatus::NONFINITE_INITIAL_COST_OR_CONSTRAINTS;
229 const Scalar μ_min = Scalar(options.tolerance) / Scalar(10);
235 constexpr Scalar τ_min(0.99);
240 Filter<Scalar> filter;
244 auto update_barrier_parameter_and_reset_filter = [&] {
246 constexpr Scalar κ_μ(0.2);
250 constexpr Scalar θ_μ(1.5);
258 μ = std::max(μ_min, std::min(κ_μ * μ, pow(μ, θ_μ)));
265 τ = std::max(τ_min, Scalar(1) - μ);
272 gch::small_vector<Eigen::Triplet<Scalar>> triplets;
274 RegularizedLDLT<Scalar> solver{num_decision_variables,
275 num_equality_constraints};
278 constexpr Scalar α_reduction_factor(0.5);
279 constexpr Scalar α_min(1e-7);
281 int full_step_rejected_counter = 0;
284 Scalar E_0 = std::numeric_limits<Scalar>::infinity();
289 scope_exit exit{[&] {
290 if (options.diagnostics) {
292 if (iterations > 0) {
293 print_bottom_iteration_diagnostics();
295 print_solver_diagnostics(solve_profilers);
299 while (E_0 > Scalar(options.tolerance)) {
300 ScopedProfiler inner_iter_profiler{inner_iter_prof};
301 ScopedProfiler feasibility_check_profiler{feasibility_check_prof};
304 if (is_equality_locally_infeasible(A_e, c_e)) {
305 if (options.diagnostics) {
306 print_c_e_local_infeasibility_error(c_e);
309 return ExitStatus::LOCALLY_INFEASIBLE;
313 if (is_inequality_locally_infeasible(A_i, c_i)) {
314 if (options.diagnostics) {
315 print_c_i_local_infeasibility_error(c_i);
318 return ExitStatus::LOCALLY_INFEASIBLE;
322 if (x.template lpNorm<Eigen::Infinity>() > Scalar(1e10) || !x.allFinite() ||
323 s.template lpNorm<Eigen::Infinity>() > Scalar(1e10) || !s.allFinite()) {
324 return ExitStatus::DIVERGING_ITERATES;
327 feasibility_check_profiler.stop();
328 ScopedProfiler iter_callbacks_profiler{iter_callbacks_prof};
331 for (
const auto& callback : iteration_callbacks) {
332 if (callback({iterations, x, g, H, A_e, A_i})) {
333 return ExitStatus::CALLBACK_REQUESTED_STOP;
337 iter_callbacks_profiler.stop();
338 ScopedProfiler kkt_matrix_build_profiler{kkt_matrix_build_prof};
343 const Eigen::SparseMatrix<Scalar> Σ{s.cwiseInverse().asDiagonal() *
350 const Eigen::SparseMatrix<Scalar> top_left =
351 H + (A_i.transpose() * Σ * A_i).
template triangularView<Eigen::Lower>();
353 triplets.reserve(top_left.nonZeros() + A_e.nonZeros());
354 for (
int col = 0; col < H.cols(); ++col) {
356 for (
typename Eigen::SparseMatrix<Scalar>::InnerIterator it{top_left,
359 triplets.emplace_back(it.row(), it.col(), it.value());
362 for (
typename Eigen::SparseMatrix<Scalar>::InnerIterator it{A_e, col}; it;
364 triplets.emplace_back(H.rows() + it.row(), it.col(), it.value());
367 Eigen::SparseMatrix<Scalar> lhs(
368 num_decision_variables + num_equality_constraints,
369 num_decision_variables + num_equality_constraints);
370 lhs.setFromSortedTriplets(triplets.begin(), triplets.end());
374 Eigen::Vector<Scalar, Eigen::Dynamic> rhs{x.rows() + y.rows()};
375 rhs.segment(0, x.rows()) =
376 -g + A_e.transpose() * y +
377 A_i.transpose() * (-Σ * c_i + μ * s.cwiseInverse() + z);
378 rhs.segment(x.rows(), y.rows()) = -c_e;
380 kkt_matrix_build_profiler.stop();
381 ScopedProfiler kkt_matrix_decomp_profiler{kkt_matrix_decomp_prof};
392 if (solver.compute(lhs).info() != Eigen::Success) [[unlikely]] {
393 return ExitStatus::FACTORIZATION_FAILED;
396 kkt_matrix_decomp_profiler.stop();
397 ScopedProfiler kkt_system_solve_profiler{kkt_system_solve_prof};
399 auto compute_step = [&](Step& step) {
402 Eigen::Vector<Scalar, Eigen::Dynamic> p = solver.solve(rhs);
403 step.p_x = p.segment(0, x.rows());
404 step.p_y = -p.segment(x.rows(), y.rows());
408 step.p_s = c_i - s + A_i * step.p_x;
409 step.p_z = -Σ * c_i + μ * s.cwiseInverse() - Σ * A_i * step.p_x;
413 kkt_system_solve_profiler.stop();
414 ScopedProfiler line_search_profiler{line_search_prof};
417 α_max = fraction_to_the_boundary_rule<Scalar>(s, step.p_s, τ);
422 return ExitStatus::LINE_SEARCH_FAILED;
426 α_z = fraction_to_the_boundary_rule<Scalar>(z, step.p_z, τ);
430 Eigen::Vector<Scalar, Eigen::Dynamic> trial_x = x + α * step.p_x;
431 Eigen::Vector<Scalar, Eigen::Dynamic> trial_y = y + α_z * step.p_y;
432 Eigen::Vector<Scalar, Eigen::Dynamic> trial_z = z + α_z * step.p_z;
434 Scalar trial_f = matrices.f(trial_x);
435 Eigen::Vector<Scalar, Eigen::Dynamic> trial_c_e = matrices.c_e(trial_x);
436 Eigen::Vector<Scalar, Eigen::Dynamic> trial_c_i = matrices.c_i(trial_x);
440 if (!isfinite(trial_f) || !trial_c_e.allFinite() ||
441 !trial_c_i.allFinite()) {
443 α *= α_reduction_factor;
446 return ExitStatus::LINE_SEARCH_FAILED;
451 Eigen::Vector<Scalar, Eigen::Dynamic> trial_s;
452 if (options.feasible_ipm && c_i.cwiseGreater(Scalar(0)).all()) {
459 trial_s = s + α * step.p_s;
463 if (filter.try_add(FilterEntry{trial_f, trial_s, trial_c_e, trial_c_i, μ},
469 Scalar prev_constraint_violation =
470 c_e.template lpNorm<1>() + (c_i - s).
template lpNorm<1>();
471 Scalar next_constraint_violation =
472 trial_c_e.template lpNorm<1>() +
473 (trial_c_i - trial_s).
template lpNorm<1>();
480 next_constraint_violation >= prev_constraint_violation) {
482 auto soc_step = step;
485 Scalar α_z_soc = α_z;
486 Eigen::Vector<Scalar, Eigen::Dynamic> c_e_soc = c_e;
488 bool step_acceptable =
false;
489 for (
int soc_iteration = 0; soc_iteration < 5 && !step_acceptable;
491 ScopedProfiler soc_profiler{soc_prof};
493 scope_exit soc_exit{[&] {
496 if (options.diagnostics) {
497 print_iteration_diagnostics(
499 step_acceptable ? IterationType::ACCEPTED_SOC
500 : IterationType::REJECTED_SOC,
501 soc_profiler.current_duration(),
502 error_estimate<Scalar>(g, A_e, trial_c_e, trial_y), trial_f,
503 trial_c_e.template lpNorm<1>() +
504 (trial_c_i - trial_s).template lpNorm<1>(),
505 trial_s.dot(trial_z), μ, solver.hessian_regularization(),
506 α_soc, Scalar(1), α_reduction_factor, α_z_soc);
516 c_e_soc = α_soc * c_e_soc + trial_c_e;
517 rhs.bottomRows(y.rows()) = -c_e_soc;
520 compute_step(soc_step);
523 α_soc = fraction_to_the_boundary_rule<Scalar>(s, soc_step.p_s, τ);
524 trial_x = x + α_soc * soc_step.p_x;
525 trial_s = s + α_soc * soc_step.p_s;
528 α_z_soc = fraction_to_the_boundary_rule<Scalar>(z, soc_step.p_z, τ);
529 trial_y = y + α_z_soc * soc_step.p_y;
530 trial_z = z + α_z_soc * soc_step.p_z;
532 trial_f = matrices.f(trial_x);
533 trial_c_e = matrices.c_e(trial_x);
534 trial_c_i = matrices.c_i(trial_x);
537 constexpr Scalar κ_soc(0.99);
541 next_constraint_violation =
542 trial_c_e.template lpNorm<1>() +
543 (trial_c_i - trial_s).
template lpNorm<1>();
544 if (next_constraint_violation > κ_soc * prev_constraint_violation) {
550 FilterEntry{trial_f, trial_s, trial_c_e, trial_c_i, μ}, α)) {
554 step_acceptable =
true;
558 if (step_acceptable) {
568 ++full_step_rejected_counter;
575 if (full_step_rejected_counter >= 4 &&
576 filter.max_constraint_violation >
577 filter.back().constraint_violation / Scalar(10)) {
578 filter.max_constraint_violation *= Scalar(0.1);
584 α *= α_reduction_factor;
589 Scalar current_kkt_error =
590 kkt_error<Scalar>(g, A_e, c_e, A_i, c_i, s, y, z, μ);
592 trial_x = x + α_max * step.p_x;
593 trial_s = s + α_max * step.p_s;
595 trial_y = y + α_z * step.p_y;
596 trial_z = z + α_z * step.p_z;
598 trial_c_e = matrices.c_e(trial_x);
599 trial_c_i = matrices.c_i(trial_x);
601 Scalar next_kkt_error = kkt_error<Scalar>(
602 matrices.g(trial_x), matrices.A_e(trial_x), matrices.c_e(trial_x),
603 matrices.A_i(trial_x), trial_c_i, trial_s, trial_y, trial_z, μ);
606 if (next_kkt_error <= Scalar(0.999) * current_kkt_error) {
613 return ExitStatus::LINE_SEARCH_FAILED;
617 line_search_profiler.stop();
621 full_step_rejected_counter = 0;
646 for (
int row = 0; row < z.rows(); ++row) {
647 constexpr Scalar κ_Σ(1e10);
649 std::clamp(z[row], Scalar(1) / κ_Σ * μ / s[row], κ_Σ * μ / s[row]);
654 A_e = matrices.A_e(x);
655 A_i = matrices.A_i(x);
657 H = matrices.H(x, y, z);
659 ScopedProfiler next_iter_prep_profiler{next_iter_prep_prof};
661 c_e = matrices.c_e(x);
662 c_i = matrices.c_i(x);
665 E_0 = error_estimate<Scalar>(g, A_e, c_e, A_i, c_i, s, y, z, Scalar(0));
668 if (E_0 > Scalar(options.tolerance)) {
670 constexpr Scalar κ_ε(10);
674 Scalar E_μ = error_estimate<Scalar>(g, A_e, c_e, A_i, c_i, s, y, z, μ);
675 while (μ > μ_min && E_μ <= κ_ε * μ) {
676 update_barrier_parameter_and_reset_filter();
677 E_μ = error_estimate<Scalar>(g, A_e, c_e, A_i, c_i, s, y, z, μ);
681 next_iter_prep_profiler.stop();
682 inner_iter_profiler.stop();
684 if (options.diagnostics) {
685 print_iteration_diagnostics(
686 iterations, IterationType::NORMAL,
687 inner_iter_profiler.current_duration(), E_0, f,
688 c_e.template lpNorm<1>() + (c_i - s).template lpNorm<1>(), s.dot(z),
689 μ, solver.hessian_regularization(), α, α_max, α_reduction_factor,
696 if (iterations >= options.max_iterations) {
697 return ExitStatus::MAX_ITERATIONS_EXCEEDED;
701 if (std::chrono::steady_clock::now() - solve_start_time > options.timeout) {
702 return ExitStatus::TIMEOUT;
706 return ExitStatus::SUCCESS;
709extern template SLEIPNIR_DLLEXPORT ExitStatus
710interior_point(
const InteriorPointMatrixCallbacks<double>& matrix_callbacks,
711 std::span<std::function<
bool(
const IterationInfo<double>& info)>>
713 const Options& options,
714#ifdef SLEIPNIR_ENABLE_BOUND_PROJECTION
715 const Eigen::ArrayX<bool>& bound_constraint_mask,
717 Eigen::Vector<double, Eigen::Dynamic>& x);