Sleipnir C++ API
Loading...
Searching...
No Matches
newton.hpp
1// Copyright (c) Sleipnir contributors
2
3#pragma once
4
5#include <chrono>
6#include <cmath>
7#include <functional>
8#include <limits>
9#include <span>
10
11#include <Eigen/Core>
12#include <Eigen/SparseCore>
13#include <gch/small_vector.hpp>
14
15#include "sleipnir/optimization/solver/exit_status.hpp"
16#include "sleipnir/optimization/solver/iteration_info.hpp"
17#include "sleipnir/optimization/solver/newton_matrix_callbacks.hpp"
18#include "sleipnir/optimization/solver/options.hpp"
19#include "sleipnir/optimization/solver/util/error_estimate.hpp"
20#include "sleipnir/optimization/solver/util/filter.hpp"
21#include "sleipnir/optimization/solver/util/kkt_error.hpp"
22#include "sleipnir/optimization/solver/util/regularized_ldlt.hpp"
23#include "sleipnir/util/assert.hpp"
24#include "sleipnir/util/print_diagnostics.hpp"
25#include "sleipnir/util/profiler.hpp"
26#include "sleipnir/util/scope_exit.hpp"
27#include "sleipnir/util/symbol_exports.hpp"
28
29// See docs/algorithms.md#Works_cited for citation definitions.
30
31namespace slp {
32
51template <typename Scalar>
52ExitStatus newton(
53 const NewtonMatrixCallbacks<Scalar>& matrix_callbacks,
54 std::span<std::function<bool(const IterationInfo<Scalar>& info)>>
55 iteration_callbacks,
56 const Options& options, Eigen::Vector<Scalar, Eigen::Dynamic>& x) {
57 using DenseVector = Eigen::Vector<Scalar, Eigen::Dynamic>;
58 using SparseMatrix = Eigen::SparseMatrix<Scalar>;
59 using SparseVector = Eigen::SparseVector<Scalar>;
60
61 using std::isfinite;
62
63 const auto solve_start_time = std::chrono::steady_clock::now();
64
65 gch::small_vector<SolveProfiler> solve_profilers;
66 solve_profilers.emplace_back("solver");
67 solve_profilers.emplace_back(" ↳ setup");
68 solve_profilers.emplace_back(" ↳ iteration");
69 solve_profilers.emplace_back(" ↳ feasibility ✓");
70 solve_profilers.emplace_back(" ↳ iter callbacks");
71 solve_profilers.emplace_back(" ↳ KKT matrix decomp");
72 solve_profilers.emplace_back(" ↳ KKT system solve");
73 solve_profilers.emplace_back(" ↳ line search");
74 solve_profilers.emplace_back(" ↳ next iter prep");
75 solve_profilers.emplace_back(" ↳ f(x)");
76 solve_profilers.emplace_back(" ↳ ∇f(x)");
77 solve_profilers.emplace_back(" ↳ ∇²ₓₓL");
78
79 auto& solver_prof = solve_profilers[0];
80 auto& setup_prof = solve_profilers[1];
81 auto& inner_iter_prof = solve_profilers[2];
82 auto& feasibility_check_prof = solve_profilers[3];
83 auto& iter_callbacks_prof = solve_profilers[4];
84 auto& kkt_matrix_decomp_prof = solve_profilers[5];
85 auto& kkt_system_solve_prof = solve_profilers[6];
86 auto& line_search_prof = solve_profilers[7];
87 auto& next_iter_prep_prof = solve_profilers[8];
88
89 // Set up profiled matrix callbacks
90#ifndef SLEIPNIR_DISABLE_DIAGNOSTICS
91 auto& f_prof = solve_profilers[9];
92 auto& g_prof = solve_profilers[10];
93 auto& H_prof = solve_profilers[11];
94
95 NewtonMatrixCallbacks<Scalar> matrices{
96 [&](const DenseVector& x) -> Scalar {
97 ScopedProfiler prof{f_prof};
98 return matrix_callbacks.f(x);
99 },
100 [&](const DenseVector& x) -> SparseVector {
101 ScopedProfiler prof{g_prof};
102 return matrix_callbacks.g(x);
103 },
104 [&](const DenseVector& x) -> SparseMatrix {
105 ScopedProfiler prof{H_prof};
106 return matrix_callbacks.H(x);
107 }};
108#else
109 const auto& matrices = matrix_callbacks;
110#endif
111
112 solver_prof.start();
113 setup_prof.start();
114
115 Scalar f = matrices.f(x);
116
117 int num_decision_variables = x.rows();
118
119 SparseVector g = matrices.g(x);
120 SparseMatrix H = matrices.H(x);
121
122 // Ensure matrix callback dimensions are consistent
123 slp_assert(g.rows() == num_decision_variables);
124 slp_assert(H.rows() == num_decision_variables);
125 slp_assert(H.cols() == num_decision_variables);
126
127 // Check whether initial guess has finite f(xₖ)
128 if (!isfinite(f)) {
129 return ExitStatus::NONFINITE_INITIAL_COST_OR_CONSTRAINTS;
130 }
131
132 int iterations = 0;
133
134 Filter<Scalar> filter;
135
136 RegularizedLDLT<Scalar> solver{num_decision_variables, 0};
137
138 // Variables for determining when a step is acceptable
139 constexpr Scalar α_reduction_factor(0.5);
140 constexpr Scalar α_min(1e-20);
141
142 // Error estimate
143 Scalar E_0 = std::numeric_limits<Scalar>::infinity();
144
145 setup_prof.stop();
146
147 // Prints final solver diagnostics when the solver exits
148 scope_exit exit{[&] {
149 if (options.diagnostics) {
150 solver_prof.stop();
151 if (iterations > 0) {
152 print_bottom_iteration_diagnostics();
153 }
154 print_solver_diagnostics(solve_profilers);
155 }
156 }};
157
158 while (E_0 > Scalar(options.tolerance)) {
159 ScopedProfiler inner_iter_profiler{inner_iter_prof};
160 ScopedProfiler feasibility_check_profiler{feasibility_check_prof};
161
162 // Check for diverging iterates
163 if (x.template lpNorm<Eigen::Infinity>() > Scalar(1e10) || !x.allFinite()) {
164 return ExitStatus::DIVERGING_ITERATES;
165 }
166
167 feasibility_check_profiler.stop();
168 ScopedProfiler iter_callbacks_profiler{iter_callbacks_prof};
169
170 // Call iteration callbacks
171 for (const auto& callback : iteration_callbacks) {
172 if (callback({iterations, x, g, H, SparseMatrix{}, SparseMatrix{}})) {
173 return ExitStatus::CALLBACK_REQUESTED_STOP;
174 }
175 }
176
177 iter_callbacks_profiler.stop();
178 ScopedProfiler kkt_matrix_decomp_profiler{kkt_matrix_decomp_prof};
179
180 // Solve the Newton-KKT system
181 //
182 // Hpˣ = −∇f
183 solver.compute(H);
184
185 kkt_matrix_decomp_profiler.stop();
186 ScopedProfiler kkt_system_solve_profiler{kkt_system_solve_prof};
187
188 DenseVector p_x = solver.solve(-g);
189
190 kkt_system_solve_profiler.stop();
191 ScopedProfiler line_search_profiler{line_search_prof};
192
193 constexpr Scalar α_max(1);
194 Scalar α = α_max;
195
196 // Loop until a step is accepted. If a step becomes acceptable, the loop
197 // will exit early.
198 while (1) {
199 DenseVector trial_x = x + α * p_x;
200
201 Scalar trial_f = matrices.f(trial_x);
202
203 // If f(xₖ + αpₖˣ) isn't finite, reduce step size immediately
204 if (!isfinite(trial_f)) {
205 // Reduce step size
206 α *= α_reduction_factor;
207
208 if (α < α_min) {
209 return ExitStatus::LINE_SEARCH_FAILED;
210 }
211 continue;
212 }
213
214 // Check whether filter accepts trial iterate
215 if (filter.try_add(FilterEntry{trial_f}, α)) {
216 // Accept step
217 break;
218 }
219
220 // Reduce step size
221 α *= α_reduction_factor;
222
223 // If step size hit a minimum, check if the KKT error was reduced. If it
224 // wasn't, report bad line search.
225 if (α < α_min) {
226 Scalar current_kkt_error = kkt_error<Scalar>(g);
227
228 DenseVector trial_x = x + α_max * p_x;
229
230 Scalar next_kkt_error = kkt_error<Scalar>(matrices.g(trial_x));
231
232 // If the step using αᵐᵃˣ reduced the KKT error, accept it anyway
233 if (next_kkt_error <= Scalar(0.999) * current_kkt_error) {
234 α = α_max;
235
236 // Accept step
237 break;
238 }
239
240 return ExitStatus::LINE_SEARCH_FAILED;
241 }
242 }
243
244 line_search_profiler.stop();
245
246 // xₖ₊₁ = xₖ + αₖpₖˣ
247 x += α * p_x;
248
249 // Update autodiff for Hessian
250 f = matrices.f(x);
251 g = matrices.g(x);
252 H = matrices.H(x);
253
254 ScopedProfiler next_iter_prep_profiler{next_iter_prep_prof};
255
256 // Update the error estimate
257 E_0 = error_estimate<Scalar>(g);
258
259 next_iter_prep_profiler.stop();
260 inner_iter_profiler.stop();
261
262 if (options.diagnostics) {
263 print_iteration_diagnostics(iterations, IterationType::NORMAL,
264 inner_iter_profiler.current_duration(), E_0,
265 f, Scalar(0), Scalar(0), Scalar(0),
266 solver.hessian_regularization(), α, α_max,
267 α_reduction_factor, Scalar(1));
268 }
269
270 ++iterations;
271
272 // Check for max iterations
273 if (iterations >= options.max_iterations) {
274 return ExitStatus::MAX_ITERATIONS_EXCEEDED;
275 }
276
277 // Check for max wall clock time
278 if (std::chrono::steady_clock::now() - solve_start_time > options.timeout) {
279 return ExitStatus::TIMEOUT;
280 }
281 }
282
283 return ExitStatus::SUCCESS;
284}
285
286extern template SLEIPNIR_DLLEXPORT ExitStatus
287newton(const NewtonMatrixCallbacks<double>& matrix_callbacks,
288 std::span<std::function<bool(const IterationInfo<double>& info)>>
289 iteration_callbacks,
290 const Options& options, Eigen::Vector<double, Eigen::Dynamic>& x);
291
292} // namespace slp