Sleipnir C++ API
Loading...
Searching...
No Matches
ocp.hpp
1// Copyright (c) Sleipnir contributors
2
3#pragma once
4
5#include <stdint.h>
6
7#include <chrono>
8#include <utility>
9
10#include "sleipnir/autodiff/variable_matrix.hpp"
11#include "sleipnir/optimization/problem.hpp"
12#include "sleipnir/util/assert.hpp"
13#include "sleipnir/util/concepts.hpp"
14#include "sleipnir/util/function_ref.hpp"
15#include "sleipnir/util/symbol_exports.hpp"
16
17namespace slp {
18
28template <typename F, typename State, typename Input, typename Time>
29State rk4(F&& f, State x, Input u, Time t0, Time dt) {
30 auto halfdt = dt * 0.5;
31 State k1 = f(t0, x, u, dt);
32 State k2 = f(t0 + halfdt, x + k1 * halfdt, u, dt);
33 State k3 = f(t0 + halfdt, x + k2 * halfdt, u, dt);
34 State k4 = f(t0 + dt, x + k3 * dt, u, dt);
35
36 return x + (k1 + k2 * 2.0 + k3 * 2.0 + k4) * (dt / 6.0);
37}
38
42enum class TranscriptionMethod : uint8_t {
45 DIRECT_TRANSCRIPTION,
48 DIRECT_COLLOCATION,
51 SINGLE_SHOOTING
52};
53
57enum class DynamicsType : uint8_t {
59 EXPLICIT_ODE,
61 DISCRETE
62};
63
67enum class TimestepMethod : uint8_t {
69 FIXED,
71 VARIABLE,
74 VARIABLE_SINGLE
75};
76
103class SLEIPNIR_DLLEXPORT OCP : public Problem {
104 public:
122 OCP(int num_states, int num_inputs, std::chrono::duration<double> dt,
123 int num_steps,
125 const VariableMatrix& u)>
126 dynamics,
127 DynamicsType dynamics_type = DynamicsType::EXPLICIT_ODE,
128 TimestepMethod timestep_method = TimestepMethod::FIXED,
129 TranscriptionMethod method = TranscriptionMethod::DIRECT_TRANSCRIPTION)
130 : OCP{num_states,
131 num_inputs,
132 dt,
133 num_steps,
134 [=]([[maybe_unused]] const VariableMatrix& t,
135 const VariableMatrix& x, const VariableMatrix& u,
136 [[maybe_unused]]
137 const VariableMatrix& dt) -> VariableMatrix {
138 return dynamics(x, u);
139 },
140 dynamics_type,
141 timestep_method,
142 method} {}
143
161 OCP(int num_states, int num_inputs, std::chrono::duration<double> dt,
162 int num_steps,
164 const VariableMatrix& u, const Variable& dt)>
165 dynamics,
166 DynamicsType dynamics_type = DynamicsType::EXPLICIT_ODE,
167 TimestepMethod timestep_method = TimestepMethod::FIXED,
168 TranscriptionMethod method = TranscriptionMethod::DIRECT_TRANSCRIPTION)
169 : m_num_states{num_states},
170 m_num_inputs{num_inputs},
171 m_dt{dt},
172 m_num_steps{num_steps},
173 m_transcription_method{method},
174 m_dynamics_type{dynamics_type},
175 m_dynamics_function{std::move(dynamics)},
176 m_timestep_method{timestep_method} {
177 // u is num_steps + 1 so that the final constraint function evaluation works
178 m_U = decision_variable(m_num_inputs, m_num_steps + 1);
179
180 if (m_timestep_method == TimestepMethod::FIXED) {
181 m_DT = VariableMatrix{1, m_num_steps + 1};
182 for (int i = 0; i < num_steps + 1; ++i) {
183 m_DT(0, i) = m_dt.count();
184 }
185 } else if (m_timestep_method == TimestepMethod::VARIABLE_SINGLE) {
186 Variable dt = decision_variable();
187 dt.set_value(m_dt.count());
188
189 // Set the member variable matrix to track the decision variable
190 m_DT = VariableMatrix{1, m_num_steps + 1};
191 for (int i = 0; i < num_steps + 1; ++i) {
192 m_DT(0, i) = dt;
193 }
194 } else if (m_timestep_method == TimestepMethod::VARIABLE) {
195 m_DT = decision_variable(1, m_num_steps + 1);
196 for (int i = 0; i < num_steps + 1; ++i) {
197 m_DT(0, i).set_value(m_dt.count());
198 }
199 }
200
201 if (m_transcription_method == TranscriptionMethod::DIRECT_TRANSCRIPTION) {
202 m_X = decision_variable(m_num_states, m_num_steps + 1);
203 constrain_direct_transcription();
204 } else if (m_transcription_method ==
205 TranscriptionMethod::DIRECT_COLLOCATION) {
206 m_X = decision_variable(m_num_states, m_num_steps + 1);
207 constrain_direct_collocation();
208 } else if (m_transcription_method == TranscriptionMethod::SINGLE_SHOOTING) {
209 // In single-shooting the states aren't decision variables, but instead
210 // depend on the input and previous states
211 m_X = VariableMatrix{m_num_states, m_num_steps + 1};
212 constrain_single_shooting();
213 }
214 }
215
221 template <typename T>
222 requires ScalarLike<T> || MatrixLike<T>
223 void constrain_initial_state(const T& initial_state) {
224 subject_to(this->initial_state() == initial_state);
225 }
226
232 template <typename T>
233 requires ScalarLike<T> || MatrixLike<T>
234 void constrain_final_state(const T& final_state) {
235 subject_to(this->final_state() == final_state);
236 }
237
247 const function_ref<void(const VariableMatrix& x, const VariableMatrix& u)>
248 callback) {
249 for (int i = 0; i < m_num_steps + 1; ++i) {
250 auto x = X().col(i);
251 auto u = U().col(i);
252 callback(x, u);
253 }
254 }
255
265 const function_ref<void(const Variable& t, const VariableMatrix& x,
266 const VariableMatrix& u, const Variable& dt)>
267 callback) {
268 Variable time = 0.0;
269
270 for (int i = 0; i < m_num_steps + 1; ++i) {
271 auto x = X().col(i);
272 auto u = U().col(i);
273 auto dt = this->dt()(0, i);
274 callback(time, x, u, dt);
275
276 time += dt;
277 }
278 }
279
286 template <typename T>
287 requires ScalarLike<T> || MatrixLike<T>
288 void set_lower_input_bound(const T& lower_bound) {
289 for (int i = 0; i < m_num_steps + 1; ++i) {
290 subject_to(U().col(i) >= lower_bound);
291 }
292 }
293
300 template <typename T>
301 requires ScalarLike<T> || MatrixLike<T>
302 void set_upper_input_bound(const T& upper_bound) {
303 for (int i = 0; i < m_num_steps + 1; ++i) {
304 subject_to(U().col(i) <= upper_bound);
305 }
306 }
307
313 void SetMinTimestep(std::chrono::duration<double> min_timestep) {
314 subject_to(dt() >= min_timestep.count());
315 }
316
322 void SetMaxTimestep(std::chrono::duration<double> max_timestep) {
323 subject_to(dt() <= max_timestep.count());
324 }
325
334 VariableMatrix& X() { return m_X; }
335
345 VariableMatrix& U() { return m_U; }
346
356 VariableMatrix& dt() { return m_DT; }
357
363 VariableMatrix initial_state() { return m_X.col(0); }
364
370 VariableMatrix final_state() { return m_X.col(m_num_steps); }
371
372 private:
373 void constrain_direct_collocation() {
374 slp_assert(m_dynamics_type == DynamicsType::EXPLICIT_ODE);
375
376 Variable time = 0.0;
377
378 // Derivation at https://mec560sbu.github.io/2016/09/30/direct_collocation/
379 for (int i = 0; i < m_num_steps; ++i) {
380 Variable h = dt()(0, i);
381
382 auto& f = m_dynamics_function;
383
384 auto t_begin = time;
385 auto t_end = t_begin + h;
386
387 auto x_begin = X().col(i);
388 auto x_end = X().col(i + 1);
389
390 auto u_begin = U().col(i);
391 auto u_end = U().col(i + 1);
392
393 auto xdot_begin = f(t_begin, x_begin, u_begin, h);
394 auto xdot_end = f(t_end, x_end, u_end, h);
395 auto xdot_c =
396 -3 / (2 * h) * (x_begin - x_end) - 0.25 * (xdot_begin + xdot_end);
397
398 auto t_c = t_begin + 0.5 * h;
399 auto x_c = 0.5 * (x_begin + x_end) + h / 8 * (xdot_begin - xdot_end);
400 auto u_c = 0.5 * (u_begin + u_end);
401
402 subject_to(xdot_c == f(t_c, x_c, u_c, h));
403
404 time += h;
405 }
406 }
407
408 void constrain_direct_transcription() {
409 Variable time = 0.0;
410
411 for (int i = 0; i < m_num_steps; ++i) {
412 auto x_begin = X().col(i);
413 auto x_end = X().col(i + 1);
414 auto u = U().col(i);
415 Variable dt = this->dt()(0, i);
416
417 if (m_dynamics_type == DynamicsType::EXPLICIT_ODE) {
418 subject_to(x_end == rk4<const decltype(m_dynamics_function)&,
419 VariableMatrix, VariableMatrix, Variable>(
420 m_dynamics_function, x_begin, u, time, dt));
421 } else if (m_dynamics_type == DynamicsType::DISCRETE) {
422 subject_to(x_end == m_dynamics_function(time, x_begin, u, dt));
423 }
424
425 time += dt;
426 }
427 }
428
429 void constrain_single_shooting() {
430 Variable time = 0.0;
431
432 for (int i = 0; i < m_num_steps; ++i) {
433 auto x_begin = X().col(i);
434 auto x_end = X().col(i + 1);
435 auto u = U().col(i);
436 Variable dt = this->dt()(0, i);
437
438 if (m_dynamics_type == DynamicsType::EXPLICIT_ODE) {
439 x_end = rk4<const decltype(m_dynamics_function)&, VariableMatrix,
440 VariableMatrix, Variable>(m_dynamics_function, x_begin, u,
441 time, dt);
442 } else if (m_dynamics_type == DynamicsType::DISCRETE) {
443 x_end = m_dynamics_function(time, x_begin, u, dt);
444 }
445
446 time += dt;
447 }
448 }
449
450 int m_num_states;
451 int m_num_inputs;
452 std::chrono::duration<double> m_dt;
453 int m_num_steps;
454 TranscriptionMethod m_transcription_method;
455
456 DynamicsType m_dynamics_type;
457
458 function_ref<VariableMatrix(const Variable& t, const VariableMatrix& x,
459 const VariableMatrix& u, const Variable& dt)>
460 m_dynamics_function;
461
462 TimestepMethod m_timestep_method;
463
464 VariableMatrix m_X;
465 VariableMatrix m_U;
466 VariableMatrix m_DT;
467};
468
469} // namespace slp
Definition ocp.hpp:103
void SetMinTimestep(std::chrono::duration< double > min_timestep)
Definition ocp.hpp:313
OCP(int num_states, int num_inputs, std::chrono::duration< double > dt, int num_steps, function_ref< VariableMatrix(const Variable &t, const VariableMatrix &x, const VariableMatrix &u, const Variable &dt)> dynamics, DynamicsType dynamics_type=DynamicsType::EXPLICIT_ODE, TimestepMethod timestep_method=TimestepMethod::FIXED, TranscriptionMethod method=TranscriptionMethod::DIRECT_TRANSCRIPTION)
Definition ocp.hpp:161
VariableMatrix & U()
Definition ocp.hpp:345
void constrain_initial_state(const T &initial_state)
Definition ocp.hpp:223
VariableMatrix & dt()
Definition ocp.hpp:356
void SetMaxTimestep(std::chrono::duration< double > max_timestep)
Definition ocp.hpp:322
VariableMatrix & X()
Definition ocp.hpp:334
VariableMatrix initial_state()
Definition ocp.hpp:363
void ForEachStep(const function_ref< void(const Variable &t, const VariableMatrix &x, const VariableMatrix &u, const Variable &dt)> callback)
Definition ocp.hpp:264
void set_upper_input_bound(const T &upper_bound)
Definition ocp.hpp:302
void for_each_step(const function_ref< void(const VariableMatrix &x, const VariableMatrix &u)> callback)
Definition ocp.hpp:246
void set_lower_input_bound(const T &lower_bound)
Definition ocp.hpp:288
VariableMatrix final_state()
Definition ocp.hpp:370
OCP(int num_states, int num_inputs, std::chrono::duration< double > dt, int num_steps, function_ref< VariableMatrix(const VariableMatrix &x, const VariableMatrix &u)> dynamics, DynamicsType dynamics_type=DynamicsType::EXPLICIT_ODE, TimestepMethod timestep_method=TimestepMethod::FIXED, TranscriptionMethod method=TranscriptionMethod::DIRECT_TRANSCRIPTION)
Definition ocp.hpp:122
void constrain_final_state(const T &final_state)
Definition ocp.hpp:234
Definition problem.hpp:57
Definition variable_matrix.hpp:29
VariableBlock< VariableMatrix > col(int col)
Definition variable_matrix.hpp:546
Definition variable.hpp:41
void set_value(double value)
Definition variable.hpp:101
Definition function_ref.hpp:13
Definition concepts.hpp:29
Definition concepts.hpp:13