12#include <Eigen/SparseCore>
13#include <gch/small_vector.hpp>
15#include "sleipnir/optimization/solver/exit_status.hpp"
16#include "sleipnir/optimization/solver/iteration_info.hpp"
17#include "sleipnir/optimization/solver/options.hpp"
18#include "sleipnir/optimization/solver/sqp_matrix_callbacks.hpp"
19#include "sleipnir/optimization/solver/util/error_estimate.hpp"
20#include "sleipnir/optimization/solver/util/filter.hpp"
21#include "sleipnir/optimization/solver/util/is_locally_infeasible.hpp"
22#include "sleipnir/optimization/solver/util/kkt_error.hpp"
23#include "sleipnir/optimization/solver/util/regularized_ldlt.hpp"
24#include "sleipnir/util/assert.hpp"
25#include "sleipnir/util/print_diagnostics.hpp"
26#include "sleipnir/util/profiler.hpp"
27#include "sleipnir/util/scope_exit.hpp"
28#include "sleipnir/util/symbol_exports.hpp"
54template <
typename Scalar>
55ExitStatus sqp(
const SQPMatrixCallbacks<Scalar>& matrix_callbacks,
56 std::span<std::function<
bool(
const IterationInfo<Scalar>& info)>>
58 const Options& options,
59 Eigen::Vector<Scalar, Eigen::Dynamic>& x) {
60 using DenseVector = Eigen::Vector<Scalar, Eigen::Dynamic>;
61 using SparseMatrix = Eigen::SparseMatrix<Scalar>;
62 using SparseVector = Eigen::SparseVector<Scalar>;
74 const auto solve_start_time = std::chrono::steady_clock::now();
76 gch::small_vector<SolveProfiler> solve_profilers;
77 solve_profilers.emplace_back(
"solver");
78 solve_profilers.emplace_back(
" ↳ setup");
79 solve_profilers.emplace_back(
" ↳ iteration");
80 solve_profilers.emplace_back(
" ↳ feasibility ✓");
81 solve_profilers.emplace_back(
" ↳ iter callbacks");
82 solve_profilers.emplace_back(
" ↳ KKT matrix build");
83 solve_profilers.emplace_back(
" ↳ KKT matrix decomp");
84 solve_profilers.emplace_back(
" ↳ KKT system solve");
85 solve_profilers.emplace_back(
" ↳ line search");
86 solve_profilers.emplace_back(
" ↳ SOC");
87 solve_profilers.emplace_back(
" ↳ next iter prep");
88 solve_profilers.emplace_back(
" ↳ f(x)");
89 solve_profilers.emplace_back(
" ↳ ∇f(x)");
90 solve_profilers.emplace_back(
" ↳ ∇²ₓₓL");
91 solve_profilers.emplace_back(
" ↳ cₑ(x)");
92 solve_profilers.emplace_back(
" ↳ ∂cₑ/∂x");
94 auto& solver_prof = solve_profilers[0];
95 auto& setup_prof = solve_profilers[1];
96 auto& inner_iter_prof = solve_profilers[2];
97 auto& feasibility_check_prof = solve_profilers[3];
98 auto& iter_callbacks_prof = solve_profilers[4];
99 auto& kkt_matrix_build_prof = solve_profilers[5];
100 auto& kkt_matrix_decomp_prof = solve_profilers[6];
101 auto& kkt_system_solve_prof = solve_profilers[7];
102 auto& line_search_prof = solve_profilers[8];
103 auto& soc_prof = solve_profilers[9];
104 auto& next_iter_prep_prof = solve_profilers[10];
107#ifndef SLEIPNIR_DISABLE_DIAGNOSTICS
108 auto& f_prof = solve_profilers[11];
109 auto& g_prof = solve_profilers[12];
110 auto& H_prof = solve_profilers[13];
111 auto& c_e_prof = solve_profilers[14];
112 auto& A_e_prof = solve_profilers[15];
114 SQPMatrixCallbacks<Scalar> matrices{
115 [&](
const DenseVector& x) -> Scalar {
116 ScopedProfiler prof{f_prof};
117 return matrix_callbacks.f(x);
119 [&](
const DenseVector& x) -> SparseVector {
120 ScopedProfiler prof{g_prof};
121 return matrix_callbacks.g(x);
123 [&](
const DenseVector& x,
const DenseVector& y) -> SparseMatrix {
124 ScopedProfiler prof{H_prof};
125 return matrix_callbacks.H(x, y);
127 [&](
const DenseVector& x) -> DenseVector {
128 ScopedProfiler prof{c_e_prof};
129 return matrix_callbacks.c_e(x);
131 [&](
const DenseVector& x) -> SparseMatrix {
132 ScopedProfiler prof{A_e_prof};
133 return matrix_callbacks.A_e(x);
136 const auto& matrices = matrix_callbacks;
142 Scalar f = matrices.f(x);
143 DenseVector c_e = matrices.c_e(x);
145 int num_decision_variables = x.rows();
146 int num_equality_constraints = c_e.rows();
149 if (num_equality_constraints > num_decision_variables) {
150 if (options.diagnostics) {
151 print_too_few_dofs_error(c_e);
154 return ExitStatus::TOO_FEW_DOFS;
157 SparseVector g = matrices.g(x);
158 SparseMatrix A_e = matrices.A_e(x);
160 DenseVector y = DenseVector::Zero(num_equality_constraints);
162 SparseMatrix H = matrices.H(x, y);
165 slp_assert(g.rows() == num_decision_variables);
166 slp_assert(A_e.rows() == num_equality_constraints);
167 slp_assert(A_e.cols() == num_decision_variables);
168 slp_assert(H.rows() == num_decision_variables);
169 slp_assert(H.cols() == num_decision_variables);
172 if (!isfinite(f) || !c_e.allFinite()) {
173 return ExitStatus::NONFINITE_INITIAL_COST_OR_CONSTRAINTS;
178 Filter<Scalar> filter;
181 gch::small_vector<Eigen::Triplet<Scalar>> triplets;
183 RegularizedLDLT<Scalar> solver{num_decision_variables,
184 num_equality_constraints};
187 constexpr Scalar α_reduction_factor(0.5);
188 constexpr Scalar α_min(1e-7);
190 int full_step_rejected_counter = 0;
193 Scalar E_0 = std::numeric_limits<Scalar>::infinity();
198 scope_exit exit{[&] {
199 if (options.diagnostics) {
201 if (iterations > 0) {
202 print_bottom_iteration_diagnostics();
204 print_solver_diagnostics(solve_profilers);
208 while (E_0 > Scalar(options.tolerance)) {
209 ScopedProfiler inner_iter_profiler{inner_iter_prof};
210 ScopedProfiler feasibility_check_profiler{feasibility_check_prof};
213 if (is_equality_locally_infeasible(A_e, c_e)) {
214 if (options.diagnostics) {
215 print_c_e_local_infeasibility_error(c_e);
218 return ExitStatus::LOCALLY_INFEASIBLE;
222 if (x.template lpNorm<Eigen::Infinity>() > Scalar(1e10) || !x.allFinite()) {
223 return ExitStatus::DIVERGING_ITERATES;
226 feasibility_check_profiler.stop();
227 ScopedProfiler iter_callbacks_profiler{iter_callbacks_prof};
230 for (
const auto& callback : iteration_callbacks) {
231 if (callback({iterations, x, g, H, A_e, SparseMatrix{}})) {
232 return ExitStatus::CALLBACK_REQUESTED_STOP;
236 iter_callbacks_profiler.stop();
237 ScopedProfiler kkt_matrix_build_profiler{kkt_matrix_build_prof};
244 triplets.reserve(H.nonZeros() + A_e.nonZeros());
245 for (
int col = 0; col < H.cols(); ++col) {
247 for (
typename SparseMatrix::InnerIterator it{H, col}; it; ++it) {
248 triplets.emplace_back(it.row(), it.col(), it.value());
251 for (
typename SparseMatrix::InnerIterator it{A_e, col}; it; ++it) {
252 triplets.emplace_back(H.rows() + it.row(), it.col(), it.value());
255 SparseMatrix lhs(num_decision_variables + num_equality_constraints,
256 num_decision_variables + num_equality_constraints);
257 lhs.setFromSortedTriplets(triplets.begin(), triplets.end());
261 DenseVector rhs{x.rows() + y.rows()};
262 rhs.segment(0, x.rows()) = -g + A_e.transpose() * y;
263 rhs.segment(x.rows(), y.rows()) = -c_e;
265 kkt_matrix_build_profiler.stop();
266 ScopedProfiler kkt_matrix_decomp_profiler{kkt_matrix_decomp_prof};
269 constexpr Scalar α_max(1);
276 if (solver.compute(lhs).info() != Eigen::Success) [[unlikely]] {
277 return ExitStatus::FACTORIZATION_FAILED;
280 kkt_matrix_decomp_profiler.stop();
281 ScopedProfiler kkt_system_solve_profiler{kkt_system_solve_prof};
283 auto compute_step = [&](Step& step) {
286 DenseVector p = solver.solve(rhs);
287 step.p_x = p.segment(0, x.rows());
288 step.p_y = -p.segment(x.rows(), y.rows());
292 kkt_system_solve_profiler.stop();
293 ScopedProfiler line_search_profiler{line_search_prof};
299 DenseVector trial_x = x + α * step.p_x;
300 DenseVector trial_y = y + α * step.p_y;
302 Scalar trial_f = matrices.f(trial_x);
303 DenseVector trial_c_e = matrices.c_e(trial_x);
307 if (!isfinite(trial_f) || !trial_c_e.allFinite()) {
309 α *= α_reduction_factor;
312 return ExitStatus::LINE_SEARCH_FAILED;
318 if (filter.try_add(FilterEntry{trial_f, trial_c_e}, α)) {
323 Scalar prev_constraint_violation = c_e.template lpNorm<1>();
324 Scalar next_constraint_violation = trial_c_e.template lpNorm<1>();
331 next_constraint_violation >= prev_constraint_violation) {
333 auto soc_step = step;
336 DenseVector c_e_soc = c_e;
338 bool step_acceptable =
false;
339 for (
int soc_iteration = 0; soc_iteration < 5 && !step_acceptable;
341 ScopedProfiler soc_profiler{soc_prof};
343 scope_exit soc_exit{[&] {
346 if (options.diagnostics) {
347 print_iteration_diagnostics(
349 step_acceptable ? IterationType::ACCEPTED_SOC
350 : IterationType::REJECTED_SOC,
351 soc_profiler.current_duration(),
352 error_estimate<Scalar>(g, A_e, trial_c_e, trial_y), trial_f,
353 trial_c_e.template lpNorm<1>(), Scalar(0), Scalar(0),
354 solver.hessian_regularization(), α_soc, Scalar(1),
355 α_reduction_factor, Scalar(1));
365 c_e_soc = α_soc * c_e_soc + trial_c_e;
366 rhs.bottomRows(y.rows()) = -c_e_soc;
369 compute_step(soc_step);
371 trial_x = x + α_soc * soc_step.p_x;
372 trial_y = y + α_soc * soc_step.p_y;
374 trial_f = matrices.f(trial_x);
375 trial_c_e = matrices.c_e(trial_x);
378 constexpr Scalar κ_soc(0.99);
382 next_constraint_violation = trial_c_e.template lpNorm<1>();
383 if (next_constraint_violation > κ_soc * prev_constraint_violation) {
388 if (filter.try_add(FilterEntry{trial_f, trial_c_e}, α)) {
391 step_acceptable =
true;
395 if (step_acceptable) {
405 ++full_step_rejected_counter;
412 if (full_step_rejected_counter >= 4 &&
413 filter.max_constraint_violation >
414 filter.back().constraint_violation / Scalar(10)) {
415 filter.max_constraint_violation *= Scalar(0.1);
421 α *= α_reduction_factor;
426 Scalar current_kkt_error = kkt_error<Scalar>(g, A_e, c_e, y);
428 trial_x = x + α_max * step.p_x;
429 trial_y = y + α_max * step.p_y;
431 trial_c_e = matrices.c_e(trial_x);
433 Scalar next_kkt_error = kkt_error<Scalar>(
434 matrices.g(trial_x), matrices.A_e(trial_x), trial_c_e, trial_y);
437 if (next_kkt_error <= Scalar(0.999) * current_kkt_error) {
444 return ExitStatus::LINE_SEARCH_FAILED;
448 line_search_profiler.stop();
452 full_step_rejected_counter = 0;
462 A_e = matrices.A_e(x);
464 H = matrices.H(x, y);
466 ScopedProfiler next_iter_prep_profiler{next_iter_prep_prof};
468 c_e = matrices.c_e(x);
471 E_0 = error_estimate<Scalar>(g, A_e, c_e, y);
473 next_iter_prep_profiler.stop();
474 inner_iter_profiler.stop();
476 if (options.diagnostics) {
477 print_iteration_diagnostics(iterations, IterationType::NORMAL,
478 inner_iter_profiler.current_duration(), E_0,
479 f, c_e.template lpNorm<1>(), Scalar(0),
480 Scalar(0), solver.hessian_regularization(), α,
481 α_max, α_reduction_factor, α);
487 if (iterations >= options.max_iterations) {
488 return ExitStatus::MAX_ITERATIONS_EXCEEDED;
492 if (std::chrono::steady_clock::now() - solve_start_time > options.timeout) {
493 return ExitStatus::TIMEOUT;
497 return ExitStatus::SUCCESS;
500extern template SLEIPNIR_DLLEXPORT ExitStatus
501sqp(
const SQPMatrixCallbacks<double>& matrix_callbacks,
502 std::span<std::function<
bool(
const IterationInfo<double>& info)>>
504 const Options& options, Eigen::Vector<double, Eigen::Dynamic>& x);