47 : m_variables{std::move(variables)}, m_wrt{std::move(wrt)} {
49 for (
size_t col = 0; col < m_wrt.size(); ++col) {
50 m_wrt[col].expr->col = col;
53 for (
auto& variable : m_variables) {
54 m_graphs.emplace_back(variable);
58 for (
auto& node : m_wrt) {
62 for (
int row = 0; row < m_variables.rows(); ++row) {
63 if (m_variables[row].expr ==
nullptr) {
67 if (m_variables[row].type() == ExpressionType::LINEAR) {
71 m_graphs[row].append_adjoint_triplets(m_cached_triplets, row, m_wrt);
72 }
else if (m_variables[row].type() > ExpressionType::LINEAR) {
75 m_nonlinear_rows.emplace_back(row);
79 if (m_nonlinear_rows.empty()) {
80 m_J.setFromTriplets(m_cached_triplets.begin(), m_cached_triplets.end());
83 m_profilers.emplace_back(
"");
84 m_profilers.emplace_back(
" ↳ graph update");
85 m_profilers.emplace_back(
" ↳ adjoints");
86 m_profilers.emplace_back(
" ↳ matrix build");
101 for (
int row = 0; row < m_variables.rows(); ++row) {
102 auto grad = m_graphs[row].generate_gradient_tree(m_wrt);
103 for (
int col = 0; col < m_wrt.rows(); ++col) {
104 if (grad[col].expr !=
nullptr) {
105 result(row, col) = std::move(grad[col]);
120 const Eigen::SparseMatrix<double>&
value() {
123 if (m_nonlinear_rows.empty()) {
129 for (
auto& graph : m_graphs) {
130 graph.update_values();
133 graph_update_profiler.
stop();
138 auto triplets = m_cached_triplets;
141 for (
int row : m_nonlinear_rows) {
142 m_graphs[row].append_adjoint_triplets(triplets, row, m_wrt);
145 adjoints_profiler.
stop();
148 if (!triplets.empty()) {
149 m_J.setFromTriplets(triplets.begin(), triplets.end());