45 : m_variables{std::move(variables)}, m_wrt{std::move(wrt)} {
47 for (
size_t col = 0; col < m_wrt.size(); ++col) {
48 m_wrt[col].expr->col = col;
51 for (
auto& variable : m_variables) {
52 m_graphs.emplace_back(variable);
56 for (
auto& node : m_wrt) {
60 for (
int row = 0; row < m_variables.rows(); ++row) {
61 if (m_variables[row].expr ==
nullptr) {
65 if (m_variables[row].type() == ExpressionType::LINEAR) {
69 m_graphs[row].append_adjoint_triplets(m_cached_triplets, row, m_wrt);
70 }
else if (m_variables[row].type() > ExpressionType::LINEAR) {
73 m_nonlinear_rows.emplace_back(row);
77 if (m_nonlinear_rows.empty()) {
78 m_J.setFromTriplets(m_cached_triplets.begin(), m_cached_triplets.end());
94 for (
int row = 0; row < m_variables.rows(); ++row) {
95 auto grad = m_graphs[row].generate_gradient_tree(m_wrt);
96 for (
int col = 0; col < m_wrt.rows(); ++col) {
97 if (grad[col].expr !=
nullptr) {
98 result[row, col] = std::move(grad[col]);
113 const Eigen::SparseMatrix<double>&
value() {
114 if (m_nonlinear_rows.empty()) {
118 for (
auto& graph : m_graphs) {
119 graph.update_values();
124 auto triplets = m_cached_triplets;
127 for (
int row : m_nonlinear_rows) {
128 m_graphs[row].append_adjoint_triplets(triplets, row, m_wrt);
131 if (!triplets.empty()) {
132 m_J.setFromTriplets(triplets.begin(), triplets.end());