#include <sleipnir/optimization/solver/interior_point.hpp>
|
std::function< double(const Eigen::VectorXd &x)> | f |
|
std::function< Eigen::SparseVector< double >(const Eigen::VectorXd &x)> | g |
|
std::function< Eigen::SparseMatrix< double >(const Eigen::VectorXd &x, const Eigen::VectorXd &y, const Eigen::VectorXd &z)> | H |
|
std::function< Eigen::VectorXd(const Eigen::VectorXd &x)> | c_e |
|
std::function< Eigen::SparseMatrix< double >(const Eigen::VectorXd &x)> | A_e |
|
std::function< Eigen::VectorXd(const Eigen::VectorXd &x)> | c_i |
|
std::function< Eigen::SparseMatrix< double >(const Eigen::VectorXd &x)> | A_i |
|
Matrix callbacks for the interior-point method solver.
◆ A_e
std::function<Eigen::SparseMatrix<double>(const Eigen::VectorXd& x)> slp::InteriorPointMatrixCallbacks::A_e |
Equality constraint Jacobian ∂cₑ/∂x getter.
/// [∇ᵀcₑ₁(xₖ)]
/// Aₑ(x) = [∇ᵀcₑ₂(xₖ)]
/// [ ⋮ ]
/// [∇ᵀcₑₘ(xₖ)]
///
<table>
<tr>
<th>Variable</th>
<th>Rows</th>
<th>Columns</th>
</tr>
<tr>
<td>x</td>
<td>num_decision_variables</td>
<td>1</td>
</tr>
<tr>
<td>Aₑ(x)</td>
<td>num_equality_constraints</td>
<td>num_decision_variables</td>
</tr>
</table>
◆ A_i
std::function<Eigen::SparseMatrix<double>(const Eigen::VectorXd& x)> slp::InteriorPointMatrixCallbacks::A_i |
Inequality constraint Jacobian ∂cᵢ/∂x getter.
/// [∇ᵀcᵢ₁(xₖ)]
/// Aᵢ(x) = [∇ᵀcᵢ₂(xₖ)]
/// [ ⋮ ]
/// [∇ᵀcᵢₘ(xₖ)]
///
<table>
<tr>
<th>Variable</th>
<th>Rows</th>
<th>Columns</th>
</tr>
<tr>
<td>x</td>
<td>num_decision_variables</td>
<td>1</td>
</tr>
<tr>
<td>Aᵢ(x)</td>
<td>num_inequality_constraints</td>
<td>num_decision_variables</td>
</tr>
</table>
◆ c_e
std::function<Eigen::VectorXd(const Eigen::VectorXd& x)> slp::InteriorPointMatrixCallbacks::c_e |
Equality constraint value cₑ(x) getter.
Variable | Rows | Columns |
x | num_decision_variables | 1 |
cₑ(x) | num_equality_constraints | 1 |
◆ c_i
std::function<Eigen::VectorXd(const Eigen::VectorXd& x)> slp::InteriorPointMatrixCallbacks::c_i |
Inequality constraint value cᵢ(x) getter.
Variable | Rows | Columns |
x | num_decision_variables | 1 |
cᵢ(x) | num_inequality_constraints | 1 |
std::function<double(const Eigen::VectorXd& x)> slp::InteriorPointMatrixCallbacks::f |
Cost function value f(x) getter.
std::function<Eigen::SparseVector<double>(const Eigen::VectorXd& x)> slp::InteriorPointMatrixCallbacks::g |
Cost function gradient ∇f(x) getter.
Variable | Rows | Columns |
x | num_decision_variables | 1 |
∇f(x) | num_decision_variables | 1 |
std::function<Eigen::SparseMatrix<double>(const Eigen::VectorXd& x, const Eigen::VectorXd& y, const Eigen::VectorXd& z)> slp::InteriorPointMatrixCallbacks::H |
Lagrangian Hessian ∇ₓₓ²L(x, y, z) getter.
L(xₖ, yₖ, zₖ) = f(xₖ) − yₖᵀcₑ(xₖ) − zₖᵀcᵢ(xₖ)
Variable | Rows | Columns |
x | num_decision_variables | 1 |
y | num_equality_constraints | 1 |
z | num_inequality_constraints | 1 |
∇ₓₓ²L(x, y, z) | num_decision_variables | num_decision_variables |
The documentation for this struct was generated from the following file: