|
| int | iteration (self) |
| |
| Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C')] | x (self) |
| |
| scipy.sparse.csc_matrix[float] | g (self) |
| |
| scipy.sparse.csc_matrix[float] | H (self) |
| |
| scipy.sparse.csc_matrix[float] | A_e (self) |
| |
| scipy.sparse.csc_matrix[float] | A_i (self) |
| |
Solver iteration information exposed to an iteration callback.
Template parameter ``Scalar``:
Scalar type.
◆ A_e()
| scipy.sparse.csc_matrix[float] jormungandr.optimization.IterationInfo.A_e |
( |
|
self | ) |
|
The equality constraint Jacobian.
◆ A_i()
| scipy.sparse.csc_matrix[float] jormungandr.optimization.IterationInfo.A_i |
( |
|
self | ) |
|
The inequality constraint Jacobian.
◆ g()
| scipy.sparse.csc_matrix[float] jormungandr.optimization.IterationInfo.g |
( |
|
self | ) |
|
The gradient of the cost function.
◆ H()
| scipy.sparse.csc_matrix[float] jormungandr.optimization.IterationInfo.H |
( |
|
self | ) |
|
The Hessian of the Lagrangian.
◆ iteration()
| int jormungandr.optimization.IterationInfo.iteration |
( |
|
self | ) |
|
◆ x()
| Annotated[NDArray[numpy.float64], dict(shape=(None,), order='C')] jormungandr.optimization.IterationInfo.x |
( |
|
self | ) |
|
The documentation for this class was generated from the following file: